News auf genesisnet

 

15.03.22  Mutationen sind doch nicht so zufällig

Eine langjährige Lehrmeinung unter Evolutionsbiologen war, dass Mutationen überall in einem Genom mit gleicher Wahrscheinlichkeit auftreten können. Befunde der Genanalytik zeigen jedoch, dass Mutationen nicht gleichverteilt sind und somit die Positionen, an denen Mutationen auftreten, nicht durchweg zufällig sind. Neue Forschungen an der Modellpflanze Acker-Schmalwand (Arabidopsis thaliana), über deren Erbgut sehr viel geforscht wird, bestätigen nun, dass Mutationen nicht gleichmäßig über das Genom verteilt sind. Eine im Januar 2022 in Nature veröffentlichte Studie belegt, dass Mutationen in Regionen des Genoms mit essenziellen Funktionen weniger häufig auftreten. Die zunächst angenommene Hypothese der Gleichverteilung muss also modifiziert werden: Nicht nur der Zufall, sondern im Genom vorhandene genetische Mechanismen sind dafür entscheidend, wo Mutationen vorgefunden werden.

Nach gängiger Lehrmeinung sind Mutationen 1. nicht vorhersehbar und hängen 2. nicht mit dem Verhalten, dem Lebensstil oder den Umweltbedingungen des Organismus zusammen. Diese Sichtweise wird von Futuyma (2005, 178f.) in seinem internationalen Standard-Lehrbuch wie folgt zusammengefasst:

„Mutationen sind in zweierlei Hinsicht zufällig. Erstens: Obwohl wir die Wahrscheinlichkeit vorhersagen können, dass eine bestimmte Mutation auftreten wird, können wir nicht vorhersagen, welche von einer großen Anzahl an Genkopien die Mutation durchlaufen wird. Zweitens … ist Mutation zufällig in dem Sinne, dass die Wahrscheinlichkeit, dass eine bestimmte Mutation auftritt, nicht davon beeinflusst wird, ob sich der Organismus in einer Umgebung befindet, in der diese Mutation vorteilhaft wäre, oder ob das nicht der Fall ist.“

Im Gegensatz zu dieser Lehrmeinung wurden in mehreren Studien sogenannte adaptive Mutationen nachgewiesen, also passende Mutationen als Reaktion auf Umweltveränderungen (Spetner 1997; Caporale 2003). Außerdem ist bekannt, dass ein hoher Prozentsatz der Mutationen an sogenannten DNA-Hotspots aufzutreten scheint, d. h. an Stellen in der DNA, die eher Mutationen zulassen (Terborg 2010; Borger 2019). Eine neue Studie (Monroe et al. 2022) bestätigt nun, was in der Schöpfungsforschung schon länger vermutet wurde, nämlich, dass einer der Hauptgrundsätze der Evolutionstheorie – die Zufälligkeit des Mutationsgeschehens – nur teilweise zutrifft.

Mutationen können in allen Zelltypen eines Organismus auftreten, also in den Gewebezellen und in den Zellen der Keimbahn (Spermien und Eizellen). Nur die Mutationen, die die Keimbahn betreffen, können an die Nachkommen weitergegeben werden, und diese sollen die Evolution vorantreiben. Im naturalistischen Rahmen der Evolutionstheorie sind alle Mutationen, auch die Mutationen der Keimbahn zufällig und Evolution verläuft daher ungerichtet. Durch natürliche Auslese sollen die zufälligen Mutationen selektiert („ausgewählt“) und fixiert werden, was im Trend zu besserer Anpassung und einen erhöhten Fortpflanzungserfolg der Nachkommen führen soll.

Möglicherweise haben die meisten Wissenschaftler aus diesem Grund bislang der Nicht-Zufälligkeit von Mutationen kaum Beachtung geschenkt (Borger 2019). Die wenigen Mutationen, die deutliche Anzeichen von Nicht-Zufälligkeit aufwiesen, wurden als Ausnahmen betrachtet, da sie nicht zur Theorie passten.

Das größte Hindernis für eine umfassende Untersuchung von Mutationen auf der Gen-Ebene war der Mangel an Daten und Analysemöglichkeiten. Das änderte sich mit den modernen Sequenzierungstechnologien und Computerkapazitäten mit entsprechenden Algorithmen, die es ermöglichen, Mutationen in großer Zahl zu untersuchen.

Der Modellorganismus Acker-Schmalwand

Die Acker-Schmalwand (Arabidopsis thaliana) ist ideal für genetische Studien, da sie ein kleines Genom besitzt (120 Millionen DNA-Buchstaben; zum Vergleich: Das menschliche Genom besitzt 3 Milliarden). Außerdem hat sie eine sehr kurze Generationszeit von 5 bis 6 Wochen, so dass Mutationen in den Nachkommen schnell entdeckt und untersucht werden können. Zudem gibt es für die Acker-Schmalwand reichhaltige Informationen über Sequenz- und Epigenom-Merkmale (d. h. Merkmale, die Meta-Informationen über die Gene enthalten, die z. B. markieren, ob bzw. wann Gene an- und abgeschaltet werden müssen).

Genome bestehen aus genreichen und genarmen Bereichen, die oft als „Genregionen“ bzw. „Genwüsten“ bezeichnet werden. Genregionen sind Abschnitte des Genoms, in denen sich die Gene befinden, einschließlich der sogenannten essenziellen Gene, die absolut unverzichtbar sind. Gene enthalten sehr spezifische Informationen, die für die Herstellung von Proteinen oder von RNA benötigt werden; sie sind relativ empfindlich gegen Mutationen und können daher durch Mutationen ihre Funktion leicht verlieren. Die Elemente der „Genwüsten“ dagegen können Mutationen besser abpuffern: Mutationen führen bei ihnen meist nicht unmittelbar zum Verlust ihrer Funktion. Diese Bereiche sind allerdings nicht funktionslos, die betreffenden Abschnitte enthalten verschiedene Elemente, die die räumliche Anordnung der Chromosomen bestimmen oder die zur Variation in den Nachkommen beitragen.

In ihrer Studie testeten Monroe et al. (2022) die Zufälligkeit von Mutationen, indem sie untersuchten, ob neue Mutationen gleichmäßig auf DNA-Regionen mit Genen und solche ohne Gene verteilt waren. Um die Mutationsrate und -position zu bestimmen, kultivierten die Forscher mehrere Generationen der Pflanzen über mehrere Jahre hinweg. Danach isolierten und sequenzierten sie die DNA von 1.700 Genomen und lokalisierten mehr als 1 Million Mutationen. Dabei stellten sie fest, dass die Teile der Genome, die Gene enthalten, eine viel geringere Mutationsrate aufwiesen als die nichtgenetischen Regionen. Die Mutationshäufigkeit war innerhalb von Gen-Regionen um die Hälfte, und in essenziellen Genen um zwei Drittel reduziert (Monroe 2022).

Einer der Autoren der neuen Studie, Grey Monroe, Pflanzengenetiker an der Universität von Kalifornien, kommentierte: „Ich war völlig überrascht von den nicht-zufälligen Mutationen, die wir entdeckt haben. Seit dem Biologieunterricht in der Schule hat man mir immer gesagt, dass Mutationen zufällig sind“ (zit. in BAKER 2022).

Mutationen treten also bei essenziellen Genen weniger häufig auf. Das Phänomen konnte nicht auf natürliche Selektion zurückgeführt werden, da die Pflanzen unter Laborbedingungen gezüchtet wurden und keine speziellen Selektionsdrücke wirksam waren. Das nicht zufällige Muster der Mutationen bei Gen- und Nicht-Gen-Regionen der DNA deutet darauf hin, dass es einen genetischen Mechanismus gibt, der mindestens einen Teil potenziell katastrophaler Mutationen verhindert. Aber wie könnte ein solcher Mechanismus funktionieren?

Wie werden potenziell schädliche Mutationen verhindert?

Die Forscher fanden heraus, dass essenzielle Gene spezielle Signale an DNA-Reparaturproteine aussenden, durch die sich selbst zu schützen können. Diese Signale werden nicht von der DNA selbst hervorgerufen, sondern von Histonen, speziellen Proteinen, um die sich die DNA wickelt, und so die Chromosomen bilden. Diese Signale gehören zu den Meta-Informationen des Epigenoms. „Basierend auf den Ergebnissen unserer Studie haben wir herausgefunden, dass Genregionen, insbesondere für die biologisch wichtigsten Gene, mit bestimmten chemischen Markierungen um Histone gewickelt sind“, so Monroe. „Wir vermuten, dass diese chemischen Markierungen als molekulare Signale wirken, um die DNA-Reparatur in diesen Regionen zu fördern“ (zit. in Baker 2022).

Diese chemischen Marker bzw. Signale sind nichts anderes als ein Code zur Stabilisierung wichtiger genetischer Information, damit der Organismus ohne Störungen funktionieren kann. Frühere Studien über Mutationen bei Krebspatienten haben ebenfalls ergeben, dass Histon-Proteine einen Code für DNA-Reparaturproteine tragen können, damit letztere Mutationen erkennen und reparieren können. Dies ist jedoch die erste Studie, die zeigt, dass ein solcher Histon-assoziierter Code das genomweite Mutationsmuster beeinflusst.

Ein codierter „Abwehrmechanismus“, der Mutationen von wichtigen Regionen fernhält, ist das, was man von einem vorausschauenden Designer erwartet, nicht jedoch von einem absichtslosen Prozess der Evolution. Es sei daran erinnert, dass die Nicht-Zufälligkeit von Mutationen nach bisher gängigen Evolutionstheorien nicht zu erwarten war. Somit ist die Frage berechtigt, ob diese neuen Erkenntnisse wichtige Teilaspekte bisheriger Evolutionstheorien in Frage stellen oder gar widerlegen. Diese Frage wird allerdings nicht gestellt. Es scheint vielmehr keine Rolle zu spielen, was wir beobachten, die Evolutionstheorie ist immer richtig: „Die Studie zeigt nur, dass diese genetischen Veränderungen komplexer sind, als Evolutionisten bisher glaubten“ (Baker 2022).

Quellen

Baker H (2022) New study provides first evidence of non-random mutations in DNA. Life Science, 14 Januar. https://www.livescience.com/non-random-dna-mutations

Borger P (2019) Artübergreifende wiederkehrende Mutationen. Stud. Integr. J. 26(2), 77-85.

Caporale LH (2003) Darwin in the Genome. The McGraw Hill Companies.

Futuyma DJ (2005) Evolutionary Biology, 3rd ed., Sinauer Associates, Sunderland, MA.

Monroe JG, Srikant T, Carbonell-Bejerano P et al. (2022) Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 602, 101–105. https://doi.org/10.1038/s41586-021-04269-6.

Spetner L (1997) Not by Chance. The Judaica Press Ltd.

Terborg P (2010) An illusion of common descent. J. Creation 24(2), 122–127.

Autor dieser News: Peter Borger

Informationen über den Autor

E-Mail an den Autor


Druckerfreundliche Version dieser Seite anzeigen   

 
© 2022, http://www.genesisnet.info/schoepfung_evolution/n299.php


Über unseren Newsletter-Service werden Ihnen neue Nachrichten auch automatisch per E-Mail zugesandt.

 
News-Übersicht